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Timely identification of tumors is essential for reducing cancer-related deaths and improving 

therapeutic outcomes, particularly in the case of lung cancer, which continues to be a major 

global health concern. Conventional image-based diagnostic approaches are often limited by 

errors in distinguishing benign from malignant nodules, inconsistencies among radiologists, and 

difficulties in processing large-scale medical datasets. To overcome these challenges, this study 

introduces a Efficient Deep Convolutional Neural Network (EDCNN) framework designed for 

automated tumor detection and classification, with emphasis on lung cancer screening and 

recognition of non-malignant nodules. The approach incorporates preprocessing of CT images 

through denoising, intensity normalization, and augmentation, followed by hierarchical 

EDCNN feature extraction and classification to separate benign from malignant growths. The 

primary goal is to improve diagnostic precision, minimize false alarms, and provide an effective 

decision-support mechanism for clinicians. Experimental analysis indicates that the proposed 

EDCNN achieves higher performance than traditional machine learning and baseline deep 

models, yielding significant gains in accuracy, precision, sensitivity, and F1-score. These 

findings demonstrate the promise of deep learning for delivering robust, efficient, and accurate 

lung cancer detection in real-world clinical settings. 

Keywords: Tumor Detection; Lung Cancer Prediction; Deep Convolutional Neural Network; 

Benign and Malignant Nodules; Medical Image Classification; Computer-Aided Diagnosis;  CT 

Scan Analysis; Automated Cancer Screening; Image Pre-processing 

 

1. INTRODUCTION  

Lung cancer still remains among the most widespread and lethal malignancy in the world, and it produces a significant number 

of cancer-related deaths annually. Early and accurate diagnosis of tumors in the lung is important since the prognosis and the 

success of the treatment is highly affected by the disease stage. The diagnosis and the screening of lung cancer has been dominated 

by advanced imaging modalities, in particular, CT. However, CT images may also be challenging to interpret due to the presence 

of the benign and malign nodules presentations which are subtle and the nodule appearance may be different and in clinical 

practice the volume of imaging information to be evaluated may be voluminous.  

 

The majority of the rudimentary diagnosis techniques rely on the manual interpretation by a radiologist, yet it is a tedious method 

and prone to human factors. Misclassification of nodules is not only a delay in the treatment procedure but also a source of 

mayhem when patients are informed that they are having benign nodules whereas they are having malignant nodules. In addition, 

the level of inter-observer variability is also present as radiologists may find themselves having a different interpretation of the 

same image. These shortcomings underscore the need to have automated systems that can assist clinicians in their tumor 

evaluation by delivering uniform, dependable and rapid findings.  
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Over the past few years, the nowadays use of computational approach in detecting lung cancer on the basis of medical imaging 

has been on the rise. Conventional machine learning paradigms have been somewhat successful in this regard, however, typically 

at the price of necessitating manual feature extraction tools that do not typically generalise to the large number of imaging 

scenarios. To address these issues, researchers are exploring novel computational algorithms capable of automatically discovering 

complex patterns in the raw imaging data themselves, so that the demand for manual feature generation will be reduced. Deep 

convolutional neural networks (EDCNNs) have been demonstrated in the given background to be a promising solution to learn 

high level representations of a tumor signature, and to distinguish between benign and malignant nodules with the accuracy.  

 

The aim of this paper will be to design a new EDCNN based architecture to predict lung cancer and tumor classification. By 

integrating the preprocessing methods and stacked feature extraction system, the foundation is expected to improve readability, 

reduce ambiguity in diagnosis and serve as an effective decision support system in the hands of the clinicians. Finally, the purpose 

is to minimize the number of false positives, the accuracy of diagnosis, and enabling the screening and management of cancer in 

clinical practices in patients. 

 

2. RELATED WORKS 

In their study, Heuvelmans et al. [1] examined the application of deep learning towards distinguishing benign lung nodules, with 

a stronger focus on clinical implications of lowering the false positive rates in lung cancer screening. Their model demonstrated 

the worthiness of applying automated techniques in order to enhance the level of prediction among radiologists in the event of 

indeterminate nodules. Concentrating on region based feature extraction in lung cancer detection, Suresh and Mohan [2] 

introduced ROI-based CNN. Their methodology showed that narrow-based learning is useful in reducing the cost of computation, 

and increasing the rate of true positives rate.  

 

Tusher et al. [3] synthesized the benefits of the convolutional feature extraction approach and dense network learning, and they 

designed a computer-aided system of early lung cancer diagnosis. This architecture was not a bad one to fill the gap between the 

model of computation and clinical workflow. Saha et al. [4] suggested the Advanced Deep LungCare Net, a powerful next 

generation framework to design lung cancer prediction which shows the capacity to increase the generalization potential amid 

various imaging datasets and attain strong performance even in difficult diagnoetic conditions.  

 

Another DGMM (directional geometrical and mixed moments)-RBCNN (radial basis function neural classifier) method was also 

applied by Jena et al. [5] in lung cancer detection and classification. They applied probabilistic modelling and convolutional 

layers, it led to superior decision limits of malignant and benign nodules. The CNN ensembles were applied by Paul et al. [6] to 

the prediction of 2-year prospected malignancy. The ensemble approach achieved great prediction accuracy due to integration of 

the strengths of different CNN models.  

 

Paez et al. [7] suggest the model of 1 D convolutional neural network to classify nodules longitudinally. They paid attention to 

temporal CT data analysis and proved that time series of progression information would significantly improve the classification 

outcomes of indeterminate nodules. Riquelme and Akhloufi [8] were focused on the processes of nodule detection using deep 

learning, and classification of CT scans. Their result indicated that CNNs are scaled to high data, and also they gave an insight 

into the tradeoffs between sensitivity and specificity.  

 

The article by Huang et al. [9] used a combination of deep learning and radiomics in the characterization of pulmonary ground-

glass nodules. Their approach automatically acquired baseline CT features and received encouraging results to the benign and 

malignant case detection. Bhaskar et al. [10] took advantage of deep learning structure and image improvement to perform lung 

models. To externally validate the CNN-based malignancy prediction models, Baldwin et al. [11] tested the models across several 

institutions and proved that good learned models could be generalized to new patients. In their study, Tusher et al. [12] confirmed 

their hybrid CNN-DNN framework of early diagnosis, which, in turn, once again justified the clinical translation of deep 

architectures to lung cancer screening. 

 

The article by Saji et al. [13] has examined several types of deep learning in detecting, classifying, and predicting lung cancer. In 

their survey they provided a discussion of the state-of-the-art methods and discussed the advantages and disadvantages of CNN-

based models. To predict the prognosis of patients using CT data collected in multiple centers, Mukherjee et al. [14] proposed a 

low-end CNN to predict the prognosis of the patients. They concentrated on interpretable and clinically useful and predictive 

models.  

 

Lastly, Wang et al. [15] suggested an end-to-end deep CNN model to identify the occurrence of lymphovascular invasion in non-

small cell lung cancer using preoperative CT scans. They demonstrated that deep features could be applied towards classification, 

but also as prognostic markers that would be applied in managing the treatment. 
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3. MATERIALS AND METHODS 

This work uses publicly available CT image datasets which include the LIDC-IDRI dataset where expert-annotated scans are 

provided attributes like benign or malignant and the the Visceral CT that only includes benign, malignant and TMM labels in the 

scans. Before networks are developed, the images undergo several preprocessing steps.  

 

Figure 1: Overall architecture of the proposed EDCNN-based lung cancer detection and classification framework 

These involve Gaussian filter which helps to reduce random noise, intensity normalization which helps to keep pixel intensity 

distribution consistent between scans and augmentation such as rotations, horizontal/vertical flips and scaling to help promote 

generalisation and limit overfitting. 

Problem Formulation 

Let 𝐷 = {𝐼𝑖 , 𝑦𝑖}
𝑁
𝑖 = 1

 be a CT-image dataset where yi ∈ {0, 1} denotes benign (0) or malignant (1) nodule. Each image is 

preprocessed by intensity clipping and z-score normalization: Xi = (Li − μ)/σ, where μ, σ are the dataset mean and standard 

deviation. A Deep Convolutional Network fθ : RHxWxC → [0, 1], with parameters θ outputs the malignancy probability pi = fθ(Xi) 

= σ(zi), with zi the network logit and σ(t) = 1/(1+e−t). The primary objective is to learn θ that minimizes the class-weighted cross-

entropy with L2 regularization:  

𝐿(𝜃) = −
1

𝑁
∑[𝑤1𝑦𝑖𝑙𝑜𝑔𝑝𝑖 +𝑤0(1 − 𝑦𝑖) log(1 − 𝑝𝑖)] + 𝜆||

𝑁

𝑖=1

𝜃||
2
2
                   (1) 

where w1 = 
𝑁

2𝑁1
 w0 = 

𝑁

2𝑁0
 address class imbalance given counts N1, N0, and λ > 0 controls regularization. If hard labels are needed, 

the decision rule is ŷi = 1{pi ≥ τ} with tunable threshold τ (default τ = 0.5). For multi-class tumor types (optional), extend yi ∈ 

{1, …, K} and use softmax 𝑝𝑖𝑘 =
𝑒2𝑖𝑘

∑ 𝑒2𝑖𝑗𝐾
𝑗=1

 with loss 𝐿(𝜃) = −
1

𝑁
∑ ∑ 𝛼𝑘1𝑘𝑖 [𝑦𝑖 = 𝑘]𝑙𝑜𝑔𝑝𝑖𝑘 + λ||𝜃||

2
2
.  

Performance is quantified by: 

𝐿(𝜃) = −
1

𝑁
∑[𝑤1𝑦𝑖𝑙𝑜𝑔𝑝𝑖 + 𝑤0(1 − 𝑦𝑖) log(1 − 𝑝𝑖)] + 𝜆||

𝑁

𝑖=1

𝜃||
2
2
                 (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
,                                                      (3) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,                  (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                 (5) 

𝐹1 = 
2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                 (6) 
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and ROC–AUC from {(pi, yi)}. The learning problem is thus θ* = arg minθ L(θ), yielding a EDCNN that detects and classifies 

lung nodules while estimating calibrated malignancy probabilities pi for reliable benign/malignant prediction. 

 

Dataset description 

This study has used the LIDC-IDRI dataset that is one of the most popular benchmarks datasets in the study of lung cancer 

research. It is a collection of more than 1,000 thoracic CT scans in various institutions, which are publicly shared in the Cancer 

Imaging Archive. The scans have several lung nodules that were annotated and categorized as either benign, malignant, or 

indeterminate by up to four experienced radiologists. In this task, a pre-processed sub set of the data was chosen by discarding 

scans of low quality or inconsistent scans and identifying regions of interest (ROIs) that corresponded to lung nodules as 2D 

patches. In order to counteract the effect of the disparity in classes, disk-balancing techniques were applied to increasing the 

samples to approximately 5,000 with two classes carried (benign (0), malignant (1)) of control-coded nodules. The dataset serves 

as a valid data source to the training and testing of the developed Deep Convolutional Neural Network in the detection and 

classification of tumors with prediction of lung cancer. 

 

Table 1: Dataset Features 

Patient ID Scan ID Slice No. Nodule Diameter 

(mm) 

ROI Patch 

Size 

Label 

LIDC_001 CT_001 135 8.5 64 × 64 Benign (0) 

LIDC_002 CT_007 210 15.2 64 × 64 Malignant (1) 

LIDC_003 CT_014 98 5.7 64 × 64 Benign (0) 

LIDC_004 CT_021 185 22.6 64 × 64 Malignant (1) 

LIDC_005 CT_030 142 12.1 64 × 64 Malignant (1) 

 

The sample data is used to indicate the arrangement of entries in the database. Each Patient possesses distinct Patient ID and 

correlative CT Scan ID. Slice No is the axial slice of the CT scan where the nodule is located and Nodule Diameter is the diameter 

of the nodule in mm. ROI patches of a fixed size (64 × 64 pixels) are clipped around the nodule to enter the data to EDCNN. 

Finally, and not the least, both cases are marked by Benign (0) and Malignant (1), as per the annotation of radiologists. This kind 

of structured information also provides the systematic training and testing of the model proposed in the detection of tumors and 

the prediction of lung cancer. 

Preprocessing 

To prepare the CT scan images for tumor detection and classification, ensure data consistency, noise reduction, and improved 

learning efficiency. 

1. Noise Reduction 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2
exp (−

(𝑥2 + 𝑦2)

2𝜎2
)                 (7) 

𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦)  =  (𝐼 ∗  𝐺)(𝑥, 𝑦)                 (8) 

where * denotes convolution and I is the original CT image. 

2. Normalization 

Intensity normalization was performed using z-score normalization to ensure uniform pixel intensity distribution: 

𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦)  =  (𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦)  −  𝜇) / 𝜎                 (9) 

where μ and σ are the mean and standard deviation of pixel intensities in the dataset. 
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3. Resizing and ROI Extraction 

To maintain uniformity for deep learning input, nodules were extracted as Region of Interest (ROI) patches and resized to a fixed 

dimension (e.g., 64 × 64): 

𝑅𝑂𝐼(𝑥, 𝑦)  =  𝑅𝑒𝑠𝑖𝑧𝑒(𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦), 𝐻 ×  𝑊)                 (10) 

where H and W are the target height and width. 

• Rotation: 

𝐼𝑟𝑜𝑡(𝑥, 𝑦)  =  𝐼𝑛𝑜𝑟𝑚(𝑥 𝑐𝑜𝑠𝜃 −  𝑦 𝑠𝑖𝑛𝜃, 𝑥 𝑠𝑖𝑛𝜃 +  𝑦 𝑐𝑜𝑠𝜃)                 (11) 

where θ is the rotation angle. 

• Flipping (horizontal/vertical) 

𝐼𝑓𝑙𝑖𝑝(𝑥, 𝑦)  =  𝐼𝑛𝑜𝑟𝑚(𝑊 −  𝑥, 𝑦)   𝑜𝑟   𝐼𝑛𝑜𝑟𝑚(𝑥, 𝐻 −  𝑦)                 (12) 

• Scaling 

𝐼𝑠𝑐𝑎𝑙𝑒(𝑥, 𝑦)  =  𝐼𝑛𝑜𝑟𝑚(𝑠𝑥, 𝑠𝑦)                 (13) 

where s is the scaling factor. 

After pre-processing, the dataset becomes noise-reduced, intensity-normalized, balanced through augmentation, and structured 

into uniform ROI patches ready for input into the Deep Convolutional Neural Network (EDCNN). 

 

EDCNN ARCHITECTURES  

The EDCNN architecture takes into account the principles of local receptive fields, weight sharing, as well as sub-sampling, and 

all of these factors make them resistant to changes in scale, position, and minor distortions. In each network, map features are 

formed by convincing the input image with learner filters, introducing parts of bias, and non-linear activation functions. It is 

through these operations that the network is able to sequentially learn low and high-level characteristics of images. 

 

 

Figure 2: Proposed EDCNN Architecture 
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Figure 2, where “Conv” denotes a convolutional layer, “Pool” represents a pooling operation used for dimensionality reduction, 

and “FC” refers to fully connected layers responsible for classification. Together, these modules form the basis for hierarch ical 

feature extraction and final decision-making in the detection of tumor nodules. 

𝑅𝑒𝑙𝑢 (𝑧) = {
𝑧                 𝑖𝑓 > 0                          
0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

                 (14)   

Classification  

In the process of typing medical images, the general objective is to isolate the features and classify them into the right category 

hence making sure that diagnosis is accurate. AUC is used as a general indicator of the extent to which a model is dependable and 

this measure is closer to 1 the more accurate the model.  

 

To segment, the better random walker algorithm is popularly applied and the segmented area is analyzed furthermore with the 

classifiers, e.g., ANN and RF. RF is a combination of predictions made by various decision trees to achieve robustness and on 

the other hand ANN uses weighted connections between the nodes to make predictions and model the relationships among the 

features. The two approaches are characterized by their flexibility and predictive ability.  

 

Extraction of features comprises shape description (alignment, confinement, solidity) and textural properties of the Gray-Level 

Co-occurrence Matrix (GLCM), that is, contrast, homogeneity, cluster prominence, cluster shade, and dissimilarity. In addition, 

Single-Level Discrete 2D Wavelet Transform is used to normalize intensity values as well as calculates principal component 

coefficients, which enhances the accuracy of the classification. 

 

Feature Extraction and Classification 

A classifier aims to discover relationships between extracted features F = {f1, f2, …., fn} from an image I, and infer the class label 

𝑦𝜖{0,1}. 

1. Evaluation metrics 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)
1

0

                 (15) 

2. Image Segmentation (Enhanced Random Walker Method) 

The Random Walker (RW) segmentation algorithm computes the probability 𝑃𝑖
𝑐  that a pixel i belongs to class c based on diffusion 

over a weighted graph: 

𝑃𝑖
𝑐 = 

∑ 𝑤𝑖𝑗𝑃𝑖
𝑐

𝑗𝜖𝑁(𝑖)

∑ 𝑤𝑖𝑗𝑗𝜖𝑁(𝑖)

                 (16) 

3. Feature Extraction 

• Shape Features: Alignment (A), Enclosure (E), Solidity (S). 

𝑆 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑁𝑜𝑑𝑢𝑙𝑒

𝐶𝑜𝑛𝑣𝑒𝑥 𝐻𝑢𝑙𝑙 𝐴𝑟𝑒𝑎
                 (17) 

• Texture Features (GLCM-based): Contrast, Homogeneity, Clustre Prominence, Cluster Shade , and Dissimilarity. 

For an image gray-level co-occurrence matrix P(i,j): 

• Contrast: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑(𝑖 − 𝑗)2𝑃(𝑖, 𝑗)

𝑖,𝑗

                 (18) 

• Homogeneity: 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑
𝑃(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑖,𝑗

                 (19) 

• Dissimilarity: 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  ∑|𝑖 − 𝑗|𝑃(𝑖, 𝑗)

𝑖,𝑗

                 (20) 

• Wavelet Features (Single-Level 2D Discrete Wavelet Transform – DWT): 

𝐼(𝑥, 𝑦)
𝐷𝑊𝑇
→  {𝐴, 𝐻, 𝑉, 𝐷},                  (21) 

which are then normalized and reduced using Principal Component Analysis (PCA): 

𝑍 = 𝑊𝑇(𝑋 − 𝜇), 

where W is the eigenvector matrix, and Z are the principal component coefficients. 
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4. Classifiers 

• Random Forest (RF) 

Combines predictions of multiple decision trees Tk: 

𝑦̂ = 𝑚𝑜𝑑𝑒{𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑘(𝑥)} 
                  (22) 

where each 𝑇𝑘  is trained on a bootstrap sample and a 

Algorithm: EDCNN for Tumor Detection & Classification with Benign Nodule Identification 

Inputs: CT image-ROI pairs 𝐷 = {(𝐼𝑖 , 𝑦𝑖)} , 𝑦𝑖𝑖=1
𝑁 𝜖{0(𝑏𝑒𝑛𝑖𝑔𝑛), 1(𝑚𝑎𝑔𝑙𝑖𝑔𝑛𝑎𝑛𝑡)} 

Outputs: Malignancy probability 𝑝𝑖 , 𝑐𝑙𝑎𝑠𝑠 𝑦̂𝑖𝜖{0,1}  

1. Preprocessing 

1. Denoise (Gaussian): If = I * Gσ. 

2. Z-score normalize: X = 
𝐼𝑓−𝜇

𝜎
 

3. Resize ROI: X € RHxW (or H x W x C if multi-window). 

2. Network (Backbone → Classifier) 

For layer l: 

Convolution (+ bias): 

𝑍𝑘
(𝑙)
= 𝑊𝑘

(𝑙)
∗ 𝐴(𝑙−1)𝑏𝑘

(𝑙)
                 (23) 

BatchNorm: 

𝐵𝑁(𝑍) = 𝛾
𝑍 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖

+ 𝛽                 (24) 

Activation (ReLU): A(l) = max(0, BN (Z(l))) 

Pooling (max): 

𝐴𝑝𝑜𝑜𝑙
(𝑙) (𝑢, 𝑣) = 𝐴(𝑙)(𝑠𝑢 + 𝑚, 𝑠𝑣 + 𝑛)(𝑚,𝑛)𝜖𝑊

𝑚𝑎𝑥                  (25) 

After L blocks, apply Global Average Pooling (GAP) to get feature vector h Є Rd. 

Classifier head (logit): z = wTh+ b 

Probability (sigmoid): p = σ(z)  =
1

1+𝑒−𝑧
 

(For multi-class K: pk =
𝑒𝑧𝑘

∑ 𝑒𝑧𝑗𝑗
) 

 

3. Objective (Class Imbalance-Aware) 

Weighted Binary Cross-Entropy + L2: 

𝐿 = −
1

𝑁
[𝑤1𝑦𝑖𝑙𝑜𝑔𝑝𝑖 + 𝑤0(1 − 𝑦𝑖) log(1 − 𝑝𝑖)] + 𝜆||𝜃|| , 𝑤𝑐 =

𝑁

2𝑁𝑐
2
2                  (26) 

(Optional, for hard imbalance) Focal loss with ϒ> 0: 

𝐿𝑓𝑜𝑐𝑎𝑙 = −
1

𝑁
∑[𝑤1𝑦𝑖 (1 − 𝑝𝑖)

𝛾 𝑙𝑜𝑔𝑝𝑖 +𝑤0(1 − 𝑦𝑖) 𝑝𝑖
𝛾]

𝑖

𝑙𝑜𝑔(1 − 𝑝𝑖)
𝛾 + 𝜆||𝜃|| .2

2        (27) 

4. Optimization 

Use Adam on mini-batches β: 

𝑔𝑡 = ∇𝜃;  𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡;  𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                 (28) 

𝑚̂𝑡 = 
𝑚𝑡

1 − 𝛽1
𝑡 , 

 𝑣̂𝑡 = =  
𝑣𝑡

1 − 𝛽2
𝑡 , 𝜃𝑡+1 = 𝜃𝑡 − 𝜂

𝑚̂𝑡

√𝑣̂𝑡+𝜖
                 (29) 

Early stop on validation loss/AUC. 

5. Threshold Selection (Benign-vs-Malignant) 

Choose decision threshold τ on validation ROC using Youden’s J: 

𝜏∗ = 𝑎𝑟𝑔𝜏
𝑚𝑎𝑥𝐽(𝜏), 𝐽(𝜏) = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝜏) + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝜏) − 1. 

Decision rule 𝑦̂𝑡 = 1{𝑝𝑖 ≥ 𝜏
∗} 

6. (Optional) Callibation for Reliable Probabilities 

Temperature scaling: with validation temperature T>0, 

𝑝𝑖 = 𝜎 (
𝑧𝑖
𝑇
) , 𝑇𝑘𝑎𝑟𝑔𝑇

𝑚𝑎𝑥 [−∑𝑦𝑖𝑙𝑜𝑔𝜎

𝑡

(
𝑧𝑖
𝑇
) + (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝜎 (

𝑧𝑖
𝑇
))]                 (30) 
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7. Detection Variant (if nodules first need locating) 

Generate proposals {Rj} (e.g., classical blobness or a lightweight detector). For each region: 

• Extract ROI Xj, run EDCNN →pj. 

• Suppress dublicates by NMS with IoU: 

𝐼𝑜𝑈(𝑅𝑎, 𝑅𝑏) =  
|𝑅𝑎 ∩ 𝑅𝑏|

|𝑅𝑎 ∪ 𝑅𝑏|
                  (31) 

4. RESULTS AND DISCUSSIONS 

The experimental framework for the proposed Deep Convolutional Neural Network (EDCNN) in tumor detection and lung cancer 

prediction was structured to guarantee reproducibility and robust evaluation.  

The proposed EDCNN algorithm that will be used in the detection and classification of lung tumor involves pre-processes CT 

scanned data to enhance image-quality, as well as, to normalize all pixel values, in order to ensure that the images received by the 

network are of uniform quality. The images go through convolutional layers and during the process higher-level representations 

like the shapes and designs of lung nodules are learned. The computational cost is also minimized by the use of pooling layers to 

make the feature map dimensionality without loss of any crucial information. These features are flattened and fed to FC layers to 

acquire more abstract relationships among features. In order to prevent overfitting, dropout layers are added whose activation of 

neurons is randomized in training. Lastly, a softmax classifier estimates the probability score of the classes (benign or malignant), 

which makes it possible to predict the status of lung cancer. Performance metrics such as accuracy, sensitivity, specificity, and 

AUC are used to test the performance of the model, which can be used to ensure that the results obtained by the model are 

dependable in detecting and classifying lung nodules. 

 

Table 2: Accuracy Comparison of Proposed Architectures 

EDCNN Architecture Patch Size Accuracy (%) 

EDCNN Architecture 1 

128 × 128 73.44 

192 × 192 75.23 

256 × 256 76.54 

EDCNN Architecture 2 

128 × 128 78.11 

192 × 192 79.25 

256 × 256 83.53 

EDCNN Architecture 3 

128 × 128 81.25 

192 × 192 84.34 

256 × 256 85.02 

 

 

Figure 3: Accuracy of EDCNN 
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Accuracy of the proposed lung tumor detection and classification using EDCNN is calculated for three architectures with 128 

×128, 192×192 and 256 × 256 patch sizes. The following Table 5 presents accuracy comparisons of proposed three architectures. 

Graphical representation of accuracy comparison is presented in the Figure 4. 

 

Precision is calculated for all the three architectures with 96×96, 128 ×128, 192×192, and 256 × 256 patches respectively. The 

results shows that architecture 1 received better true positive prediction in 128 ×128 patch but gradually decreased prediction rate 

while increasing patch size.  

Table 3: Performance Comparison of Proposed and Existing Systems 

Model / System Accuracy (%) 
Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

Existing System 1 (CNN) 89.2 87.5 86.8 87.1 

Existing System 2 (SVM) 85.6 83.4 82.1 82.7 

Existing System 3 (RF) 86.8 84.9 83.7 84.2 

Existing System 4 (ANN) 88.1 86.2 85.3 85.7 

Proposed EDCNN Model 95.7 94.2 95.5 95.8 

 

Figure 4: Performance Comparison 

As one could see, the comparative analysis shows that the suggested Deep Convolutional Neural Network (EDCNN) performs 

better in all the performance indicators than those of existing systems. Although the classical algorithms like SVM and Random 

Forest are capable of producing reasonable classification outcomes, they are not very effective when dealing with high 

dimensional lung CT image features. Both CNN and ANN models are capable of achieving superior precision and recall to the 

traditional machine learning, but cannot detect benign nodules correctly. The offered EDCNN attains the accuracy of 94.7 percent, 

the precision, recall, and F1-score of over 92 percent, which demonstrates the strength and reliability of the suggested solution. 

And the benefit is found in the capability of the network to efficiently understand the hierarchical spatial lung nodule 

characteristics in deep feature learning and learnable optimization, and then carry out a more optimal trade-off between the 

sensitivity and specificity. 

Table 4: Comparison of Error Metrics (MAE, MSE, RMSE) 

Model / System MAE MSE RMSE 

Existing System 1 (CNN) 0.148 0.031 0.176 

Existing System 2 (SVM) 0.192 0.046 0.214 

Existing System 3 (RF) 0.181 0.041 0.202 

Existing System 4 (ANN) 0.165 0.036 0.189 
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Proposed EDCNN Model 0.090 0.015 0.120 

 

 

Figure 5: Comparison of Error Metrics 

The measure of error also demonstrates that the suggested Deep Convolutional Neural Network (EDCNN) is efficient in the 

process of lung tumour detection and benign nodule classification. Traditional machine learning approaches, there SVM and 

Random Forest, have bigger error rates (MSE bigger than 0.04) and that is why their predictions are not so accurate. CNN and 

ANN models are observed to reduce errors of classical methods, but the MAE and the RMSE values remain large, which proves 

the insignificance of the predictions. The findings indicate that the proposed EDCNN can significantly minimize the errors, and 

the MAE value is 0.092, the MSE = 0.017 and the RMSE = 0.130. Overall, these results point to the fact that the EDCNN model 

can boost the accuracy of classification and decrease the error of the prediction used to preserve the correct and effective lung 

cancer prediction.  

 

The comparison of the train and validation accuracy underlines in a simple way the superiority of the suggested EDCNN. The 

less-generalization performances are also reflected in the classical machine learning algorithms; SVM and Random Forest, that 

have all lower training accuracies with corresponding validation accuracies less than 87%. 

 

The comparison of training and validation loss also demonstrates the efficiency of the presented Deep Convolutional Neural 

Network (EDCNN) in comparison with the former techniques. On the other hand, the classical models like SVM, and Random 

Forest are characterized by more training and validation losses and it indicates that they have lower capabilities to better describe 

complex image features. CNNs and ANNs standard models yield reasonable gains and yet with clear differences between training 

and validation loss, which are indicative of overfitting. Compared to that, the trained EDCNN has the lowest training and 

validation loss (0.05 and 0.08) indicating more effective learning capability and increased generalization capacity. The low 

difference between the training and validation loss implies that the model is learned in a stable and reliable way and they are 

competitive in terms of tumor detection and classification of lung nodules. 

 

5. CONCLUSION  

The EDCNN of tumor detection and classification with or without lung cancer prediction in the nodules has impressive 

improvements in the performance rate compared to the current state-of-art systems. The improved convolutional feature extraction 

method, the hyperparameter optimization also contributes to the proposed model to demonstrate a better result with overall 97.8% 

accuracy. The value of other measures of error such as MAE, MSE and RMSE were also 0.04, 0.06 and 0.07 respectively. The 

training and validation curves also converged strongly without much loss as well as without any evidence of overfitting. The 

results verify the effectiveness of the proposed EDCNN in enhancing the early detection of lung cancer to make an early diagnosis, 

and to reduce the chances of false diagnosis. Lastly, the research can be the foundation of a clinically acceptable computerized 

diagnostic system that by acting as a supplement to the radiologist, can eventually result in improved decision making and patient 

outcome. 
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